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Abstract

Isoscalar surfaces in turbulent flows are found to be more complex than (self-
similar) fractals, in both the far field of liquid-phase turbulent jets and in a re-
alization of Rayleigh-Taylor-instability flow. In particular, they exhibit a scale-
dependent coverage dimension, D2(λ), for 2-D slices of scalar level sets, that in-
creases with scale, from unity, at small scales, to 2, at large scales. For the jet flow
and Reynolds numbers investigated, the isoscalar-surface geometry is both scalar-
threshold- and Re-dependent; the level-set (coverage) length decreases with increas-
ing Re, indicating enhanced mixing with increasing Reynolds number; and the size
distribution of closed regions is well described by lognormal statistics at small scales.
A similar D2(λ) behavior is found for level-set data of 3-D density-interface behavior
in recent direct numerical-simulation studies of Rayleigh-Taylor-instability flow. A
comparison of (spatial) spectral and isoscalar coverage statistics will be discussed.

1. Introduction

Following the introduction of Fourier spectra in the analysis of velocity corre-
lations and the decomposition of turbulent kinetic-energy by G. I. Taylor (1938),
descriptions of turbulent flow have largely relied on spectral measurement and ana-
lysis methods. Subsequent contributions introduced the notion of similarity in the
description of small-scale turbulence (Kolmogorov 1941a,b,c; “K41”) as discussed
by G. K. Batchelor (1953) and J. O. Hinze (1975), with important refinements and
extensions subsequently put forth (e.g., Monin & Yaglom 1975, Frisch 1995).
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The successes of these proposals, however, must be tempered by the host
of turbulent-flow issues that cannot be addressed by correlation/spectral/moment
analyses that classical descriptions have provided, that are also typically limited to
uniform and isotropic flows. Part of the difficulty can be traced to the fact that in-
formation offered by such analyses is not invertible. Given a process, its spectrum,
for example, is specified. Knowledge of the spectrum, alone, yields only limited
other information about the process.

Such turbulent-flow issues often pose questions regarding the geometrical prop-
erties of turbulence-generated fields. Examples of such issues include, heat and mass
transfer in turbulent flows; mixing and chemically-reacting turbulent flows, requir-
ing information about the surface-to-volume ratio of scalar level sets; aerooptics
and optical-beam propagation through a turbulent medium, which (absent addi-
tional modeling and assumptions) require geometrical information about index-of-
refraction gradients; aeroacoustics and weak- and strong-wave propagation through
turbulence, which rely on the geometrical properties of both scalar and velocity
fields; and many others. While important progress has been made in these phe-
nomena as well, which has derived considerable benefit from classical turbulence
theory, in almost all cases, additional, often ad hoc, assumptions, variations, and
models are employed, often implicitly.

More recently, the realization that Direct Numerical Simulation (DNS) methods
cannot hope to represent turbulent phenomena at the high Reynolds numbers of
interest, especially when coupled to other physical processes that must be computed
concurrently, has led to the quest for subgrid-scale (SGS) models that describe
the behavior of scales smaller than those that can potentially be resolved in the
simulations. Significantly, classical models do not yield the necessary SGS models,
which also require additional structure and assumptions, as would be employed in
Large Eddy Simulations (LES) calculations. Geometrical scaling information that
would permit an extension of descriptions founded on an underresolved range of
scales would facilitate this quest.

An important contribution that addressed some geometric-scaling issues was
made by B. Mandelbrot (1975, 1982), who proposed that (power-law/self-similar)
fractals could be used to describe level-set behavior of scalar and other turbulence-
generated fields. A considerable body of experimental and modeling work by many
investigators followed these proposals, as discussed by Sreenivasan (1991, 1994).
An extension of these proposals, necessitated by recent experiments and direct
numerical simulations, will be discussed below.
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2. Fractals and scale-dependent irregular level sets

Mandelbrot (1975, 1977, 1982), proposed to apply the notion of stochastic
geometric self-similarity to describe a host of physical phenomena, including turbu-
lence. Level sets in a d-dimensional embedding space conforming to this description
he dubbed as fractal and can be covered by a number of elements (boxes, tiles, line
segments), Nd(λ), of size λ, given by,

Nd(λ) ∝ λ−Dd , (1a)

where,

Dd = − d log Nd(λ)
d log λ

, (1b)

must be a constant. For level sets generated by turbulent flow, Eq. 1b must be
regarded as potentially applicable over some finite range of scales, only, i.e.,

λi ≡ max{ λν , λD } � λmin < λ < λmax � δ . (1c)

Here δ is the outer scale and λi is the inner scale, e.g., viscous-/diffusion-scale
maximum, of the flow.

Irregular level sets need not be geometrically self-similar and may be charac-
terized by a coverage, Nd(λ), whose logarithmic derivative, Dd(λ), may now be a
function of scale, i.e.,

Dd(λ) = − d log Nd(λ)
d log λ

, (2a)

which we may dub the (scale-dependent) coverage dimension. Inverting Eq. 2a leads
to,

Nd(λ) = exp

{∫ δ

λ

Dd(λ′)
dλ′

λ′

}
, (2b)

for a coverage count normalized at λ = δ, i.e., for Nd(δ) = 1 (Takayasu 1982, 1992;
Miller & Dimotakis 1991; Dimotakis 1991; and Catrakis & Dimotakis 1996a). A
more complete discussion of these notions can be found in the review by Dimotakis
& Catrakis (1996).

Equations 2a,b are the counterparts of Eqs. 1b,a, that may be regarded as a
special case, with the more relaxed definition of Dd(λ) in the former now allowing
their application over the whole range of flow scales. They will be used to analyze
two-dimensional slices of the scalar field in the far-field of liquid-phase turbulent
jets and of the density field in a Rayleigh-Taylor-instability flow.
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3. Isoscalar geometry in turbulent jets

In recent liquid-phase jet experiments (Catrakis & Dimotakis 1996a), the fluid
Schmidt number (Sc ' 2.0 × 103) and flow Reynolds number (Re ' 4.5 × 103,
9.0 × 103, and 18 × 103) resulted in a jet-fluid concentration field with a complex,
multiscale geometry. Laser-induced-fluorescence images of the scalar far field in this
flow, in a plane normal to the jet axis, are shown in Fig. 1. They span the whole
jet-fluid-concentration field, at the z/dj = 275 downstream measurement location.

Fig. 1 Laser-induced fluorescence scalar-field data in a liquid-phase turbulent jet
at Re ' 4.5×103 (left) and 18×103 (right) in a plane normal to the jet axis
in the far field (z/dj = 275). Color denotes jet-fluid concentration level.

Spatial spectra computed for the jet scalar-field data are shown in Fig. 2. The
2-D spectrum (left) is for a single image realization (Re = 9 × 103) and very-nearly
axisymmetric. Radial spectra, obtained by azimuthal integration, are also shown
(right) for the three Reynolds numbers investigated. As can be seen, other than
axisymmetry, very little information is conveyed by the 2-D spectrum; similarly
for the radially-averaged spectra, which, however, indicate a decreasing wavenum-
ber content with increasing Re, in contrast to classically-expected behavior. The
departure occurs at wavenumbers corresponding to scales roughly 1/3 the image
extent and are not the consequence of measurement resolution, which is adequate.
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Fig. 2 Scalar spectrum for single image realization in a turbulent jet, at Re = 9×103

(left) and ensemble-averaged radial scalar spectra (right), for Re = 4.5×103,
9 × 103, and 18 × 103; lines of increasing solidity denote increasing Re.

The concentration data were thresholded at a level c(x, y) = c2, corresponding
to the peak in the scalar pdf at the two lower Reynolds numbers (cf. Catrakis &
Dimotakis 1996a, Fig. 8) and the δb-size bounding box was computed, i.e., the
circumscribing rectangle of the level set. At this threshold, δb is independent of Re,
within measurement statistics. Figure 3 depicts selected stages of a typical coverage
sequence of a c2-level set, at Re ' 9.0 × 103, through binary subdivisions of the
bounding box. Size is here defined as the square-root of the box/tile area.

One δb-size tile covers the set, i.e., N2(δb) = 1, while four half-size tiles cover
the set, i.e., N2(λ = δb/2) = 4, yielding D2(λ) → 2, as λ → δb. As λ gets smaller,
only a fraction of the total number of tiles is needed, i.e., N2(λ) < N2,tot(λ) =
(δb/λ)2, and the coverage dimension decreases. Finally, at the smallest λ’s, the
coverage approximates the level-set contour. In this limit, N2(λ), increasing linearly
with λ, as λ → 0. The latter limit can be assessed by computing the normalized
scalar level-set coverage length, L(λ), from the coverage count, N2(λ), as a function
of the coverage scale, λ, i.e.,

L(λ)
δb

=
λ

δb
N2(λ) → const., as λ → 0 . (3)

This is plotted in Fig. 4 (left), for the three Reynolds numbers investigated. As
can be seen, the data indicate a scale-independent level-set coverage length, at
small scales; a limiting behavior attained for scales higher than the measurement
resolution. The data also indicate a level-set coverage length that decreases with
increasing Re.
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Fig. 3 Coverage sequence stages of a scalar level set in a liquid-phase turbulent jet
(Re ' 9.0 × 103).

The coverage dimension, D2(λ), is shown in Fig. 4 (right), for the Reynolds
numbers investigated (Eq. 2a). It is a smoothly-increasing function of scale, bounded
by its limiting value of unity (topological dimension), at the smallest scales, and 2
(embedding dimension), at the largest scales (cf., also, Miller & Dimotakis 1991).
A similar behavior obtains for lower and higher values of the scalar threshold.
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Fig. 4 Coverage length and coverage dimension as a function of (normalized) scale
for scalar level sets in a turbulent jet. Re ' 4.5 × 103: dotted/crosses;
Re ' 9.0 × 103: dashed/triangles; Re ' 18 × 103: solid/squares.

Both the coverage length and dimension indicate less-convoluted level sets
with increasing Re, in accord with the radially-averaged spatial-spectrum sequence
(Fig. 2, right). The limiting value of L(λ), as λ → 0, and the coverage dimension,
D2(λ), at medium-to-large scales, both decrease with increasing Re. These findings
are consistent with enhanced mixing, relative to stirring, as Re increases, leading to
improved local homogenization of the scalar field and geometrically-simpler scalar
level sets. These, in turn, result in lower surface-to-volume ratios, with increasing
Re. This is manifest in the comparison plot of sample c2-level sets computed from
Re = 4.5 × 103 (left) and Re = 18 × 103 (right) realizations (Fig. 5).

For such data, scalar level sets consist of individual (disjoint) “islands” and
“lakes”, depending on whether the interior is at a lower, or higher, scalar level,
respectively. It is useful to analyze island/lake statistics, such as size and shape
complexity. In the context of combustion, for example, an island would be associ-
ated with an unburnt fuel pocket in a non-premixed turbulent-jet flame. Such an
analysis indicates that the size distribution of such features is well approximated
by a log-normal pdf, at small-to-intermediate scales (Catrakis & Dimotakis 1996b).
Size here is defined as

√
A, with A the individual island/lake area.

Returning to chemical reactions and combustion in non-premixed hydrocarbon
turbulent flames, in which combustion is largely confined to the instantaneous sto-
ichiometric (isoscalar) surface (Burke & Schumann 1928), area-volume measures of
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Fig. 5 Scalar c2 level sets at Re ' 4.5 × 103 (left) and 18 × 103 (right), indicating
simpler topology at higher Reynolds number.

the isoscalar surface may be used to relate the local burning rate to the time re-
quired for the local consumption of unburnt fuel pockets. Such a measure, dubbed
shape complexity , can be defined as,

1 ≤ Ω2 ≡ P

2 ( πA )1/2 ≤ ∞ , (4)

in 2-D, where P is the perimeter and A the area of an island or lake, with (Ω2)min = 1
attained for a circle, and corresponding extensions for Ωd, for higher-dimensional
embedding spaces. The liquid-phase jet data described above indicate that a power
law over 3 decades in size (6 decades in area) provides a good approximation for
the pdf of shape complexity. This behavior is equivalent to log-Poisson statistics
for Ω2 (Catrakis & Dimotakis 1998).

4. Isoscalar geometry in Rayleigh-Taylor-instability flow

A coverage analysis was also performed on isodensity data from a Navier-Stokes
DNS study of the evolution of a Rayleigh-Taylor-instability flow, of a Sc ≡ ν/D = 1
fluid. The flow was initialized with a ρ = 3 fluid on top and a ρ = 1 fluid on the
bottom, in a 2562×512 rectangular box. The three-dimensional DNS of the evolving
flow was terminated when the spatial-resolution requirements could no longer be
met by the fixed grid, at Refinal ' 1.1×103, based on the vertical extent and growth
rate of the Rayleigh-Taylor mixing region (Cook 1998).
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Fig. 6 Rayleigh-Taylor-instability flow. ρ = 3 fluid initially on top, ρ = 1 fluid on
the bottom. Plot of ρ = 2 isosurface at indicated times.

The simulation utilized periodic boundary conditions in the boundary planes
transverse to the acceleration vector, and no-slip at the top and bottom faces at the
end of the long dimension of the box, which was aligned with the acceleration vector.
A small-amplitude perturbation of the interface between the two fluids initialized
the flow. Figure 6 illustrates the evolution of the ρ = 2 isosurface.
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Fig. 7 Temporal evolution of scalar power spectrum (left) and coverage dimension
(right) for a 2D slice (at mid-height) of the ρ = 2 isoscalar surface in a
numerical simulation of the Rayleigh-Taylor-instability flow.

Figure 7 (left) shows the time evolution of the spatial spectrum of the density
field in the midheight plane, i.e., of ρ(x, y, z = 0), for the indicated times. The
spectrum initially exhibits a progression to lower wavenumbers, a result of diffusive
smoothing of the initial density-field perturbation (recall that Sc = 1 here). While
the low wavenumber spectral content continues to increase, a sustained progression
to higher wavenumbers with increasing time (for t > 1.4) can be seen, plausibly
as the Rayleigh-Taylor and other, secondary, flow instabilities take over, with the
spectrum reflecting the growth of small-scale features at the midheight plane.

Figure 7 (right) plots the coverage dimension, D2(λ), for the ρ(x, y, z = 0) = 2
isodensity contours, in the same plane, computed by successive binary subdivisions
of the midheight slice, as in the jet scalar-data analysis, above. The resulting
coverage dimension D2(λ) spans the range of values from unity (the topological
dimension), to 2 (the embedding dimension), smoothly transitioning between the
two limiting values, at the smallest and the largest scales, respectively, a finding not
in accord with (constant) fractal-dimension behavior assumed by Timmes (1994) in
modeling Rayleigh-Taylor-instability flow, for example. Interestingly, the temporal
progression indicated by D2(λ) is from small to large scales, for t <∼ 3.5, i.e.,
opposite the high-wavenumber trend in the spectral analysis. It is not until near
the end of the simulation (for t >∼ 3.5), where this trend is reversed, at small scales
only. The reasons for this apparent disagreement will be discussed below.
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Fig. 8 Plot of ρ(x, y, z = 0; t) surfaces (left) and ρ(x, y, z = 0; t) = 2 contours
(right), at times (top to bottom): t = 0.938, 1.875, 4.607, and 4.810.
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The spectrum measures the wavenumber content of the ρ(x, y, z = 0; t) density
field, i.e., the density surface in the midheight plane. The level-set coverage analysis
interrogates the ρ(x, y, z = 0; t) = 2 contours in the midheight plane, i.e., the
(ρ = 2)-elevation slice of the former. These data are depicted in Fig. 8, left and
right, respectively, at the indicated times. Comparison of the two early-time (t =
0.938 and 1.875) top figures, indicates increasingly smoother contours (right), while
the density surface is developing sharp peaks. The latter are responsible for the
spectral progression to higher wavenumbers. This trend continues for a while, with
a subsequent transition evident in the behavior of the density surfaces (left). These
develop a more complicated topology, characterized by folds between local maxima
and minima, at late times (cf. Fig. 8, bottom: t = 4.607 and 4.810), indicative of
mixing. This is also evident in the level-set contours that now develop small-scale
features, on top of the larger-scale features that continue to increase in size.

Viewing the flow evolution through the three-dimensional density-field data
(not discussed here) indicates that the likely cause of this transition is the devel-
opment of secondary instabilities, of the Kelvin-Helmholtz type in the high-shear,
near-midheight regions generated by the interpenetrating Rayleigh-Taylor fingers,
and the formation of mushroom-like structures at their tips (cf. Fig. 6). The cross-
over in the coverage dimension, D2(λ), at small scales for late times revealed this
transition, even though there is scant, if any, evidence for it in the spectral data.
It is an attestation of the scale-local capability of the coverage analysis that such
geometrical properties were clearly registered in those statistics. They were subse-
quently confirmed by computer-visualization of the corresponding field information.

5. Conclusions

Classical turbulence statistics and theories, while providing important guid-
ance, do not explicitly address geometrical issues. Such issues require new tools,
such as the ones derived from the original self-similar fractal ideas, and as extended
to accommodate the behavior of scale-dependent irregular level sets. Statistics
that derive from the coverage analysis of level sets provide many useful geometric
measures that complement information from classical theories and analysis of tur-
bulence. Two turbulent-flow cases, involving experimental data in the far-field of
liquid-phase turbulent jets and a moderate-Re realization of a Sc = 1 Rayleigh-
Taylor-instability flow, confirm the need for such extensions. In particular, the
scale-local nature of coverage analysis of irregular level sets makes it a better regis-
ter of geometrical information, which is difficult to infer from spectral data alone.
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